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Abstract

The asymptotic distribution of the log-1likelihood ratio s
shown to provide a method of determining approximate confidence limits
for any coherent system when each component has an exponential life
vith unknown failure rate and component performance dats are provided
in the form, number of failures (minimum of one) and total operating
time. Some computational methods to facilitate the determination of
the lower confidence bound at a given level are provided in the
important case of a series system. A numerical comparison is made
betveen the nominal confidence level and the actual confidence level,

by counting the number of times the true reliability is caught within

the confidence bound determined by the likelihood ratio method using
repeated computations from random numbers generated with a specified

distribution.




0. Introduction

The problem of entahlishing confidence limits for the reliability
of swystems has now extended over a decade. The first results were those
of Buehler [2) in 1957. The problem he considered was equivalent with
finding exact confidence limits for two components in series with
binomial data on ecach component. The construction of tables of exact
bounds for up to three component series systems with various sample sizes
for the components was done by Lipow and Riley (7). This work {n two

volumes wan published by the Defense Documentation Center.

However, the bulk of the tables for even such small numbers of
components made the use of simpler approximare confidence limits quite
appealing. Madansky in [9) utilized the asymptotic distribution of the
likelihood ratio and the usual practice of inverting a test to obtain a

confidence bound, to yield approximate confidence bounds for series,

parallel and series-parallel systems.

Recently Lentner and Buehler (6] used the Lehmann-Scheffé theory

of exponential families to find exact confidence limits for the specific

case of components in series. Due to the difficulty in computing these

limits, El Mawaziny and Buehler [4] give an approximation to this exact ;
solution for tle case where the sample sizes for all components are i
large and the failure law for each component is exponential. |
4

El Mawaziny and Buehler make no numerical comparisons of their
4
approximate confidence intervals with those obtained by the exact method, 3

or the approximations using the asymptotic distribution of the maximum

likelihood estimates or the likelihood ratio. They do show that under

certain conditions on the component samples sizes their confidence




limits are asymptotically equal to both the maximum likclihood limits
and to the special case of Bayesian limits where the prior "density" {is
a particular nonprobabilistic form. They state that they do not believe

that their method in applicable to other than series systems.

Approximate confidence intervals for the reliability of any system
(or structure) which can be represented by a monotone Boolean function
nf Bernoulli variates were obtained by Myhre and Saunders [10). In [10])
the component failure data were the outcome of a number of Bernoulll
trials for performance or nonperformance. That paper was an extension
of the results of Madansky loc. cit., for series systems in that it
depended upon the adequacy of the asymptotic distribution of the
likelihood ratio. Here we will follow the same general lines of
argument used in [10] to obtain approximate confidence intervals for
system reliability from samples of component life lengths but the
assumption of binomial data on performance of each component is replaced

by the assumption of component life length being exponentially distributed.




l. Ihe Geperal Coherept System

Let the number of components in a given system be m,
The state of the components, at any given time t - 0, 1{is the
random vector Y(t) = (Yl(t).....Ym(t)) where Yj(t). a
Bernoulli random variable, is the indicator of performance for
the jth component at that time. It is assumed that the system
has a unique represchtation as a nondecreasing Boolean
function :, the functional value of which, ¢(J(t)), 1is the
indicator of the state of the aystem. We assume without loss of

generality that each component of ¢ is essential, p. 64, [1].

The reliability of the jth componeut is EY, (t) and

i
similarly the reliability of the system is E¢(Y(t)) at any

time t * 00

If the life length of the jth component xj = sup{t > O: Yj(t) = 1}
is exponentially distributed for j§=1,...,m, then the density of XJ
is

Let )\ = (Xl....,Am) be a point in the parameter space

Hom (Opaeeesdy)i 0 <Ay <@ f=l,oii,m).
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Slnee we are primarily i{nterested in the system reliability
at o prescribed time (In certain cases called the mission length)

we can without loss of generality take it to be unity. We now

net

h(') = EY())

m I-YJ
=N TT exp (-3 y )1 - exP("j)l
y i=1 )

where y = (yl.....ym) is a vertex of the m-dimensional unit

hypercube and the summation is over all such vertices. Une sees

that

“(y) Tﬂﬁ. {

(1.2)  h() = 5
4=1

; exp(-)j) + (l-yj)ll - exp(-xj)]}.

Suppose that nJ -1 1identical replications of the jth

component are tested for j=1,...,m.

Consequently, observations are made on independent random

variables identically distributed as xj, which by our convention

are life lengths expressed as multiples (possibly less thar one)

of the given mission length. Call these variables Xij for

i=)],...,n,.

A
We postulate that often in practice the random variable which
is actually obscrved is min[xij,ZiJ] where Zij is the random time

(again expressed in terms of mission length) at which the test of the




lth replication of the 1th component will terminate for any reason

other than failure of the component. Perhaps zij is degenerate at the
fixed time at which the test is terminated, this time being determined by
the funds available for testing and known prior to the test's commencement.
Alternatively, le could be the random time of failure of ancillary test
equipment which causes the abortion of the test, or any one of a hundred
other causes. The important point is:that we observe the events

X ) i=l,...,8

19 " %gg ! O DRy < 244 3
(1.3)
[le - zij] F\[Xij > zij] i-sJ+1,...,nj

where »_, (the number of complete life observations of the jth

i

component) is an observed value of a random variable determined by

the juint distribution of 2 i=],...,n which 18 unspecified.

1) 3’
(Under special circumstances the distribution of the number of observed
failures is known to be Poisson.)

Sometimes, of course, it is decided prior to the start of the
test of the jth component that it will be terminated at the ajth failure
Here sj would be a known parameter and the time of completion of the

test would become a random variable. The required joint distribution

of 2 i=1l,...,n, can be surmised for this case.

1) A

We will now state a well-known result as

Lemma 1: If (Zl""’zn) is a vector of non-negative random
variables independent of (xl,...,xn) which are themselves identically
distributed non-negative random veriables with common density £, then

the likelihood of the event
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Tl T L S a——

k n
(1.4) N oIX, 23X, =x1 N (X, >2]1z, =z]
AR Ll S LR B R

is of the form

3 n
KTT ) TTIL - F(zy))
i=1 k+1

where K does not depend upon f.

Proof. Let  be the joint distribution of (Zl,...,Zn), then

the probability of the event specified in (1.4) is

n
Ce _]'r'r f) TT [1-F(z))d6(z,00052)
z,»x, i=1,...,k i=1 i=k+1

171
which upon simplification shows that

K = /. s e s jhc(zl,...,zn),

‘{zi>xi i=1,...,k}

and thus for any observed failure times (xl,...,xk), K does not

depend upon f.

This lemma, in equivalent forms, was given earlier by Herd [5) and

Sampford [11]. Also in this connection see the discussion by Cohen in

[2].

Throughout what follows we shall assume that 2 for i=1,...,n

1)

j’

have a distribution such that with probability one

(1.5) 0<s, <n




T

It is clear now that the log-likelihood function for the numple

from the jth component may be written as

exp{L*(A)} - K T—Jr f T—}

))
I a1 Lms 41 “13

where Kj is a constant not depending upon the parameter XA of Ln":

distribution.
‘r.
From the specific assumption made in (1.1), by setting L¥* = _ L?,
§=
we find
(1.5.1) L*(A) = 2 [tn Ky + 8y 402, = at,]

R e el

where for typographical convenience we denote the total test time

(in fractions of the mission length) of the jth component by

% "
(1.6) t, = x,, + Ziaies
AT 1migb1 U

The logarithm of the likelihood ratio, say L(r), 1s given by

L(r) = sup L*()) - sup L*(1).
{xth())=r} eI

We now follow the usual method of inverting a test, in this case

the likelihood ratio test, in order to obtain a confidence interval.

Proceeding as we have done in [10] we utilize Wilks' theorem [14]

on the asymptotic behavior of the logarithm of the likelihood ratio to

-
4
L
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obtain a confidence set of level y for the system reliability at

the mission length, This 1s
2
(1.6.1) {r: =2L(r) < XY(I)}

)
where (1)  is the }th quantile of the Chi-square distribution with
!

onc degree of freedom,

Since the maximum likelihood estimate of ) is

3

W see

m
2 N\ i ¥ - .
121 fin Kj + sj n s_1 sj(ln tj + 1)]

To maximize L*(.) subject to the restriction h()) = r we use

a Lagrange multipler *, take partial derivatives, and equate to zero,

== [L*() - 5h())] = 0.
i

This is equivalent with

- sh(x)] = 0,

m
— N\

LG T

and thus we obtaln
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|
) -t = 63,h(})
Aj j 3
where ajh is the partial derivative of h with respect to AJ.
The existence of ajh follows from the definition of h. For given

§ denote the vector solution of (1.7) by i(§), assuming presently
that it exists and is unique within Jf, which we shall later prove

in Theorem 3. Note that i(0) = A.

Since Lagrange multipliers are being used it will be shown that
the confidence set may conveniently be written in terms of the

multiplier § rather than in terms of the reliability r.

First define

(1.8) A(S) = LX[R(5)] - L*(})

for those values of &§ for which X(§) exists. It will be shown later

in Theorem 4 that the existence of unique X, (§) implies the existence of

3

the derivative ij(é). Thus it is possible to differentiate A with

respect to &§. Since

m
= X -3 -
A(6) j:i [sj Ln AJ(G) AJ(G)tJ s-1 2n sJ + sJ 2n tj + sj]
m 8
'(5) = —1 17
A'(S) 321 ["3(5) £y 13} ()

which by equation (1.7) shows

m
A'(8) = D> §3,h[X(8)]X

: d . .:
PR 6) = & <= n(i(®)]

3

-

LA T 5

Fobosintndnic..
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From this equation there follows

Lemma 2: At each & for which X(S) exists h)(§) 1s monotone
decreasing in & if and only i1f A(8) 1is monotone decreasing in 6

for & - 0 and monotone increasing in § for ¢ < 0.
Using this result we obtain

Theorem 1: If ha(+) 1is monotone decreasing across an interval

-+ - +
[£ ,8 ] where & <« 0 < & are two values of § for whicn

AB) = =k )(2(1)
Y
then

(1.8.1)  fr: ¢ i) = (e 2L < xs(l)}.

Proof. Since h+(8) 1s a one to one transformation for each
given r for which 2L(r) < yz(l), there exists a unique Gr such that

h\(Sr) = r. Thus by definition we have
L(r) = L*[A(8 )] - L*(A) = A(8)

and the parameterization of L by r may be replaced by that of A by
Sl

To complete this argument we must show that there exists values of
for which (‘) exists uniquely, and hopefully can be easily found,

and also that there exists values of § in an interval about zero for

which h'(+) 1is decreasing. We turn to the first task now.

§
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The transformation A from H into H for fixed & we define

by setting 1its jth component for {=1,...,m

—— EL
t+63,h (1)

(1.9) Aj()\;é) -

This 1is suggested by solving (1.7) as if ajh were constant.

"t is clear that Aj (0;8) 1is continuous in &§. Since ajh(x) <0,

see equation (1.14) below, A,(A;+) 1s an increasing function of §

3

for tj > -dajh(}\).

We now quote from [10] a result easily proved, that for a,b ¢ (0,1)
and o,3 any real numbers

-]

(1.10) |aa-bg| < |a=b| + |a-g].

For a given structure ¢ define the criticality of the jth

component in the structure by

(1.11) cy = D ¢(y|3:1) - o(y|4:0)
Y4
i¥]
where (y|j:x) = (yl""’yj-l’x’yj+1""’ym) for x = 0,1.

We now have

Theorem 2: For each ¢ (or h) and all 6 such that

m s.c
(1.12) min(tl,...,tm) >8>0 and Z —-1-1-—5<-§—
j=1 (t,~8)

3

AT e
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m s,c
(1.13) <« 0 and .\_ —i51< T%'-l' .
j=1 tj |

the transformation A(+;8) 1s a contractive map of the complete metric

space  (H,d) into [tself where

a3

: R
d( "‘)_m — IX

- for - K.
=1 i Ujl sk ¢

Proof. It must be shown that there exists p ¢ [0,1) such that

s ' d[A(),A(n)]) < pd(},u) for all A,u eI

F Note that throughout this proof we shall omit showing the dependence of

both A and p upon % {in order to simplify the notation. Now

siélajh(u)-81h(A)]

j+aajh(x)][tj+<sajh(u)]'

A‘i(“) = f\j(ll) = [t

Since by known properties of coherent systems, see [1]

i(y) = yjb(y[jzl) + (l-yj)¢(y]j:0)

substitute Y1(1) for yj

and take expectations to obtain

= =
h()) = e Jh(r|j:1) + (1~ Hh(1]1:0).

Now

-}
(1.14) b)) =e JhO5:0) - WO 4:D)].

SRk o 2
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1f we continue he expansion we obtain
Ld

=\ =A

-\
a () =e A N {4 (y]1:0) = ¢(y|3: DI T T [y,e 1y (1-y ) (1-e Hn.
! ;. 141
Yy
143
Thus writing out Ujh(v) - ajh(\); using the definition of (1.11) and

applying the inequality (1.10) repeatedly on the last fraction we find:

m - =A
lajh(u) = th(A)I < e 121 le LIane i|.
Since |e A i| < Iry - u1|
|ajh(u) - ajh(A)I < me,d(,u)
and
%1, 4¢84 0)
d(A(V),A()) < = [tj+531h(k)][tj+68jh(u)] ,

Since each component is essential it follows from (1.14) that

hjh(x) <0 as 0 < h(A]j:1) - h(1]4:0) < 1. It also follows from
=X

(1.14) that ajh(A) > -e 3 > =1, Thus it is sufficient to require

that (1.12) hold for 6 > 0 and (1.13) hold for 6 < 0.]]

For any A° ¢ H we define the sequence

AR(s) = AG™L(6):6)  n=1,2,...

where

A°(8) = A°,

BT, e

e
e
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Theorem 3: For every & {n the neighborhood of zero defined by
the inequalities (1.12) and (1.13), a unique solution to the system of
equations (1.7) exists, call it X(8). It can be found for any initial

point A° € 3 as lim An(G) =2 (8).
n-b:x;

Proof. That A(+;8) for & within the prescribed neighborhood

of zero has a unique fixed point
1(8) = m A"(8) = AR (8):0)
follows from the known behavior of contractive maps, e.g. see p. 27,

(8].1]

Thus we have established the first claim which was made, namely

that 1(§) exists uniquely. Now we prove

Theorem 4: The function A(*) 1s a continuously differentiable

function within the neighborhood of zero prescribed by (1.12) and (1.13).

Proof. Fix & within the prescribed neighborhood and let B be

the vector valued function with its jth coordinate defined by

Lm

Bj(A:G) = aajh(x) * tj - :

D
-

By Theorem 3 the equation B(A:6) = 0 has a unique solution, call it A

Thus the Jacobian is not zero, i.e.

det 3B (A;8) # 0.

3

From the implicit function theorem the continuous differentiability of

the function B 1is inherited by X. Thus if X exists it is continuously

differentiable. ||
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In view of Theorems 3 and 4 it remains only to show that hi(ﬁ)
is a decreasing function of &. We then have the result that for any
coherent structure ; an approximate confidence interval for the

reliability function h is given by (1.8.1) in Theorem 1.

Theorem 5: For any coherent structure ¢ with reliability
function h and any failure data such that s, > 1, there exists

J

a neighborhood of zero in ¢ across which hi(é) is decreasing in §.

Proof. Take the derivative of both sides of (1.7) with respect

to &, primes denoting such differentiation, we obtain for j=1,...,m

-s m
(1.15) —L o= amies Y e nd) -y
oo 3 = 1
3
where we have omitted the argument &. Muleiply by ;3 on both sides
of (1.15) and sum to obtain
m m nm S
-\ ._._L. (2= N andy i+ s YN 3, h ()1
ERE Y A j=1 =1 qy=1 H i

]

which 1s equivalent with,

n . j
(1.16) - £h0H()] = Y —L(xj) 65 3 FRYCONHIP

j=1 (Aj) i=1 =1

For 46 =0, (1.16) is positive and from the continuity of dd h[X(é)]
it follows that there exists a neighborhood of & about zero such that

h\(é) 1is a decreasing function of G.II

ad
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Thus for any coherent structure where the data on each component's
reliability consists of knowing the times of failure or the lengths of
time a component worked without failure, assuming the life length of
the individual components are exponentially distributed, it is possible
to find an approximate confidence interval of some level about the
~aximum likelihood estimate of the system reliability at the given

mission) time. Of course, it may not be possible that an approximate
confidence interval of arbitrary level can be found for every structure

and every set of sample da.a, but it is always possible to obtain an

interval estimate.




2. The Series System

For any coherent structure ¢ with associated reliability function h,

there exists a series system, the reliability of which bounds the system

reliability h from below, i.e.
]

(2.1) h(1) > exp{- Y v\
j=1 3

where is the number of minimal cuts of h (or ¢) which contain j

Y

as a member. For the exact definition of minimal cut and a more detailed

discussion of this point, see [12].

Because of this fact we will, in this section consider only the case
2n h()) = -Zvjxj and obtain a lower confidence bound. We think this i

the most important case.

We will follow the general procedure which has been presented in
the preceding section. However, as a convenience we reparametrize by
imposing the restriction in the form that the &n h(A) is constant,

and equate

;}— [L*(A) - 6 &n h(})] = O.
i

Thus we obtain, instead of (1.7), the equation

A

8
(2.2) L ey
j i

which has the explicit solution
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Thus in this particular case, it is unnecessary to use the general

contractive map theorems in order to calculate X(§) = (Xl(a),...,Xm(a)).

For this special case we find, using (1.5.1) and (1.8),

m T T
Mo = S s [l - =+ pn(—)
j=1 h| Tj § 'rj 8

Ty " tj/vj for j=1,...,m. In accord with finding only a lower

confidence bound, we want co solve for x > 0 such that

where

(2.3) A(x) = =% szr(l)’

where Xi(l) is the 100yth percentile of the Chi-square distribution
with one degree of freedom. Call the solution of (2.3) the value 5:.

Then
m s
55 4
h(3(6)] = exp|- > —1=
Y =1 rj-G
Y

is an (approximate) lower bound for h()) of level 1%1 » rather than
of level vy, since we are obtaining only a one-sided confidence bound.

We now exhibit a practical method for the determination of 6:.

For a given y, 0 < y < 1 there exists an x > 0 such that f(x) = 0

where
£ = -1 - % xE)
(2.4) m 1 1 m
- N i - i _ - 2
3’1 81 T X zn(ri-x)] % 81 % Xy(l)'




The solution of f(x) = 0 must be unique since

m 51 ]
£'(x) = x 7> 0 ;
i=]1 (Ti-x) ¥
i
whenever 0 < x < min(Tl""'Tm) = 1(1), which is a more stringent 1%
condition than (1.12). But note that ?;
m T1+x
f'(x) = 2 8§ 7™ 3 >0
i=] (ri-x)
for 0 < x < T(l)'

Thus we see that both f',f", which are continuous, do not vanish
for 0 < x < 1(1). These are sufficient conditions that the Newton

iteration procedure, namely

flx _q)
X =X

n n-l o f'(x ) n-l'z’lci.

n-1
<+
will converge to the value Gy.

We now state the

Theorem 6: Let the data (ti,si) i=1l,...,m be given, where ti

represents the total test time for the ith component and s, > 1,

i

represents the number of failures of that component during that time.

If vy is the criticality of the 1th component in any structure being

measured by the number of minimal cuts of the system which contain the

1th component as a member, and e tilvi' then




m s
expl| - ) ---L-ﬁ: for 0<t v, /6F
§=1 (1,/t)=6 (1) "y
(2.5) ] l
0 for t > r(l)/5:

is a lower confidence bound cf level l§1 , where 0 <y <1 s
prusclected, for the system reliability for all time ¢t > 0. The quantity
+

§ 1is the solution of the equation f(x) = 0 and f was defined in

equation (2.4).

Proof. We have only to remark that the selection of a time scale

in terms of mission length was arbit-ary so that the bound derived

previously can be used for the reliabilit: at all times.
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3. A Numerical Illustration

As a numerical illustration of the behavior of the previously
outlined procedure we shall study its performance on a specified series
system with ten components. Take m = 10. We shall assume that
Aj =1 for j=1,...,10. Thus the true reliability of the system is,

10t

by (1.2) e for t > 0. We also assume that nJ = vy = 1 and

thus 1, = t, for j=1,...,m.

3 3

We will now generate 10 exponential variates, tl,...,tm, each

with unit mean and solve the equation f£f(x) = 0 where

m ti ti
(3.1) f(x) = > | ——-n(—=)| - c.
i

{=1 tix t,.-x

and CY is a constant determined by the nominal level of the confidence

bound.
We find that for y = .95, C 95 = 11.353. Call the solution of
(3.1) the value 6:. The lower bound for the reliability is by (2.5)

, for O0<t«<éht

m
(3.2) exp{ - z (—l'—+) y )’

i=1 ti/t-dY

and the confidence level is 97.5.

Generating forty independent observations of an exponential variate

with unit mean, resulted in the following four samples:

]
e ad
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(1) (2) (3) (4)
1.305 1.889 .2331 3.258
1.346 3.864 .8881 .1848
1.483 .7789 .04059 .7594

.2931 .4825 .8329 2.420

.2282 1.171 .1948 .8638

. 3489 <5642 1.332 .5307
1.342 .3525 2.105 .06695

.7171 .9037 1.144 .8239

.3397 .5590 1.203 .2452
1.126 <5445 07427 .2306

Solving (3.1) by machine program and calculating (3.2) for each
set of observations vielded the confidence bounds which are summarized

visually in Figure 1.

Reliability

Figure 1. 97.5% lower confidence bounds on the reliability of a 10
component system based on independent samples.

(0) 1is the true reliability e-IOt for t > 0O

(i) 1is the confidence bound based on sample (i)
for i=l,2’3,4-
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As a further illustration of the stochastic behavior of this
method we shall repeat the entire procedure two thousand times but
instead of calculating the entire lower bound function we shall only
compute (3.2) at t = .01. Then we shall make a frequency histogram
of the values of the reliability bounds for the specified value
t = .01. The twenty percentile points, successive differences being

.05, of the empiric distribution are:

Percentile Percentile Point
.05 0.106621
.10 0.297174
.15 0.417770
.20 0.492659
.25 0.552798
.30 0.596595
.35 0.632835
.40 0.665383
45 0.689521
.50 0.707729
.55 0.730936
.60 0.750021
65 0.767430
.70 0.782541
.75 0.798792
.80 0.815686
.85 0.833291
.90 0.851064
.95 0.877483

1.00 0.940218

A graph of the empiric distribution is given in Figure 2. Note
that the true reliability of e-°1 = ,904837 slightly exceeded the
nominal 97.5 percentile. In fact the actual count was 1979 values

less than e-'1 out of the 2000 observations sampled. This was

approximately the 99th percentile.
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Cumulative percentage less than or equal
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Figure 2. Empiric distribution of the 97.5 per cent lower confidence
bound using 2000 observations when the true reliability is

e~'1 = .905.
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Thus we see the stated confidence level of 97.5 percent appears
to be, in this instance, slightly conservative. To check this we
rupeated this entire experiment a second time and we observed 1990 out
of 2000 observations of the reliability bound were less than e '

which increases our suspicion of a slightly conservative tendency

for the level of confidence in this case.
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